Abstract

Integrable difference equations commonly have more low-order conservation laws than occur for nonintegrable difference equations of similar complexity. We use this empirical observation to sift a large class of difference equations, in order to find candidates for integrability. It turns out that all such candidates have an equivalent affine form. These are tested by calculating their algebraic entropy. In this way, we have found several types of integrable equations, one of which seems to be entirely unrelated to any known discrete integrable system. We also list all single-tile conservation laws for the integrable equations in the above class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.