Abstract
Within the framework of kinetic-energy-driven superconductivity, the asymmetric doping dependence of superconductivity between the hole- and electron-doped triangular-lattice superconductors has been studied. It is shown that although the superconducting transition temperature has a dome-shaped doping dependence for both the hole- and electron-doped triangular-lattice superconductors, superconductivity appears over a wide range of doping in the hole-doped case, while it only exists in a narrow range of doping in the electron-doped case. Moreover, the maximum superconducting transition temperature around optimal doping in the electron-doped triangular-lattice superconductors is lower than that of the hole-doped counterparts. The theory also shows that the asymmetric doping dependence of superconductivity between the hole- and electron-doped cases may be a common feature for a doped Mott insulator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.