Abstract
BackgroundDifferential DNA methylation plays a critical role in the regulation of imprinted genes. The differentially methylated state of the imprinting control region is inherited via the gametes at fertilization, and is stably maintained in somatic cells throughout development, influencing the expression of genes across the imprinting cluster. In contrast, DNA methylation patterns are more labile at secondary differentially methylated regions which are established at imprinted loci during post-implantation development. To investigate the nature of these more variably methylated secondary differentially methylated regions, we adopted a hairpin linker bisulfite mutagenesis approach to examine CpG dyad methylation at differentially methylated regions associated with the murine Dlk1/Gtl2 imprinting cluster on both complementary strands.ResultsWe observed homomethylation at greater than 90% of the methylated CpG dyads at the IG-DMR, which serves as the imprinting control element. In contrast, homomethylation was only observed at 67–78% of the methylated CpG dyads at the secondary differentially methylated regions; the remaining 22–33% of methylated CpG dyads exhibited hemimethylation.ConclusionsWe propose that this high degree of hemimethylation could explain the variability in DNA methylation patterns at secondary differentially methylated regions associated with imprinted loci. We further suggest that the presence of 5-hydroxymethylation at secondary differentially methylated regions may result in hemimethylation and methylation variability as a result of passive and/or active demethylation mechanisms.
Highlights
Differential DNA methylation plays a critical role in the regulation of imprinted genes
CpG dyads within the Gtl2‐differentially methylated region (DMR) display high levels of hemimethylation To determine whether asymmetric methylation is unique to the Dlk1-DMR or is a feature of other secondary DMRs associated with imprinted loci, we examined CpG dyad methylation at the linked Gtl2-DMR
To test the hypothesis that hemimethylation is a normal characteristic of secondary DMRs associated with imprinted loci, we utilized a hairpin bisulfite mutagenesis approach to examine CpG dyad methylation at another secondary DMR as well as at a primary DMR that serves as an imprinting control region (ICR)
Summary
Differential DNA methylation plays a critical role in the regulation of imprinted genes. The differentially methylated state of the imprinting control region is inherited via the gametes at fertilization, and is stably maintained in somatic cells throughout development, influencing the expression of genes across the imprinting cluster. Genomic imprinting in mammals results in the parent of origin-specific monoallelic expression of a subset of genes. Achieving the appropriate balance of gene expression from the maternally and paternally contributed genomes via the establishment of parental allele-specific imprinting marks is crucial for normal growth and development. Monoallelic expression of imprinted genes is achieved via multiple mechanisms, including epigenetic modifications such DNA methylation and histone modifications, as well as the activity of long noncoding RNAs [3, 4]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have