Abstract

The single-atom Fe-N-C catalyst has shown great promise for the oxygen reduction reaction (ORR), yet the intrinsic activity is not satisfactory. There is a pressing need to gain a deeper understanding of the charge configuration of the Fe-N-C catalyst and to develop rational modulation strategies. Herein, we have prepared a single-atom Fe catalyst with the co-coordination of N and O (denoted as Fe-N/O-C) and adjacent defect, proposing a strategy to optimize the d-orbital spin-electron filling of Fe sites by fine-tuning the first coordination shell. The Fe-N/O-C exhibits significantly better ORR activity compared to its Fe-N-C counterpart and commercial Pt/C, with a much more positive half-wave potential (0.927 V) and higher kinetic current density. Moreover, using the Fe-N/O-C catalyst, the Zn-air battery and proton exchange membrane fuel cell achieve peak power densities of up to 490 and 1179 mW cm-2, respectively. Theoretical studies and in situ electrochemical Raman spectroscopy reveal that Fe-N/O-C undergoes charge redistribution and negative shifting of the d-band center compared to Fe-N-C, thus optimizing the adsorption free energy of ORR intermediates. This work demonstrates the feasibility of introducing an asymmetric first coordination shell for single-atom catalysts and provides a new optimization direction for their practical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call