Abstract

A copper(II) complex, [Cu2(L)2(N3)2] [where HL = 2-((3-(methylamino)propylimino)methyl)-6-methoxyphenol] has been synthesized and characterized by elemental analysis, IR, UV–vis and fluorescence spectroscopy, and single-crystal X-ray diffraction studies. The complex crystallizes in the trigonal space group R. The deprotonated tridentate Schiff base occupies three coordination sites of copper(II). The fourth coordination site is occupied by an azide. A symmetry-related azide from a different molecule coordinates with the fifth site of copper(II), thereby forming a double end-on azide-bridged centrosymmetric dimer. Variable temperature solid–state magnetic studies between 2 and 300 K were carried out and the data indicate predominant antiferromagnetic exchange interactions with 2J = –0.45 cm−1. The magnetic field-dependent magnetization study (M − H) reveals existence of antiferromagnetic ordering at a lower temperature (2 K) with a very small coercive field (~20 Oe) suggesting soft magnet behavior of the complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.