Abstract

Structurally well-defined bimetallic titanium(IV) (salen) and monometallic vanadium(V) (salen) complexes have been used as catalysts for the asymmetric addition of trimethylsilyl cyanide to β-nitroalkenes to produce chiral nitronitriles with ee values in the range of 79–89 % and conversions up to 100 % at 0 °C. The reaction conditions (solvent, temperature, time and vanadium complex counter-ion) were optimised, and it was shown that the catalyst loading could be significantly reduced (20 to 2 mol %) and the reaction temperature increased (−40 to 0 °C) compared to previous studies that used an in situ prepared catalyst. The results are compared and contrasted with previous results obtained by using the same catalysts for the asymmetric addition of trimethylsilyl cyanide to aldehydes, and a transition-state structure for the asymmetric addition of trimethylsilyl cyanide to nitroalkenes is proposed to account for the observed stereochemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.