Abstract

We present the mechanism for the asymmetric absorption of acoustic waves in a two-port transparent waveguide system by shunting detuned Helmholtz resonators (HRs) pairs in cascade. Theoretical analysis, numerical simulations, and experimental measurements verify that sound energy is almost totally absorbed (96.1%) at ∼373 Hz when sound waves are incident from one side while it is largely reflected back from the opposite side by judiciously designed HRs to provide manipulated surface impedance matching/mismatching to that of air at the opposite sides of the waveguide. Thus, asymmetric acoustic absorber is achieved at a low frequency. We have further demonstrated the flexibility of this methodology to get non-reciprocal absorption and reflectance in multiband and broadband. Our design advances the concept of asymmetric acoustic manipulation in passive two-port systems and may enable sound-absorbing devices for more versatile applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call