Abstract

Organic transformations exclusively in water as an environmentally friendly and safe medium have drawn significant interest in the recent years. Moreover, transition metal-free synthesis of enantiopure molecules in water will have a great deal of attention as the system will mimic the natural enzymatic reactions. In this work, a new set of proline-derived hydrophobic organocatalysts have been synthesized and utilized for asymmetric Michael reactions in water as the sole reaction medium. Among the various catalysts screened, the catalyst 1 is indeed efficient for stereoselective 1,4-conjugated Michael additions (dr: >97:3, ee up to >99.9%) resulting in high chemical yields (up to 95%) in a very short reaction time (1 h) at room temperature. This methodology provides a robust, green, and convenient protocol and can thus be an important addition to the arsenal of the asymmetric Michael addition reaction. Upon successful implementation, the present strategy also led to the formation of an optically active octahydroindole, the key component found in many natural products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call