Abstract
The generation of large scale flows by the anisotropic kinetic alpha (AKA) effect is investigated in simulations with a suitable time-dependent space- and time-periodic anisotropic forcing lacking parity invariance. The forcing pattern moves relative to the fluid, which leads to a breaking of the Galilean invariance as required for the AKA effect to exist. The AKA effect is found to produce a clear large scale flow pattern when the Reynolds number, R, is small as only a few modes are excited in linear theory. In this case the non-vanishing components of the AKA tensor are dynamically independent of the Reynolds number. For larger values of R, many more modes are excited and the components of the AKA tensor are found to decrease rapidly with increasing value of R. However, once there is a magnetic field (imposed and of sufficient strength, or dynamo-generated and saturated) the field begins to suppress the AKA effect, regardless of the value of R. It is argued that the AKA effect is unlikely to be astrophysically significant unless the magnetic field is weak and R is small.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.