Abstract
Oceanic Anoxic Event 2 (OAE2) was a major disturbance in global carbon cycling and transient climate disruption, triggered by a pulse of volcanic CO2. Although this well-studied perturbation to the ocean–atmosphere system offers a unique opportunity to better understand abrupt climate change in response to CO2-forcing, the origin, evolution and duration of the event are still debated due in large part to the temporal resolution of existing OAE2 records and uncertainty over the duration of the overall perturbation and C cycle shifts within it. Here we report coupled magnetic susceptibility (MS) and carbon-isotope time-series of ∼2.5 to 5±0.5kyr resolution from an expanded OAE2 interval from southern Tibet, China. MS cyclicity indicates short eccentricity modulation, permitting the construction of a high-precision orbital timescale which, when integrated with the high resolution δ13Ccarb record, fully constrains the timing and nature of onset through recovery of OAE2, revealing finer-scale structure than previously recognized. Abrupt coupled shifts in δ13Ccarb and MS, and changing phase relationships in-step with transitions between high and low long eccentricity, indicate orbitally linked changes in marine carbon cycling and monsoon dynamics superimposed on repeated wholesale oceanographic changes. In particular, the high-resolution Tibetan record reveals dynamic shifts in the phasing relationship of MS and δ13C, which suggests that the initiation of ocean anoxia was probably not orbitally forced. This finding is in sharp contrast with the paradigm of orbitally forced ocean anoxia. Conversely, the new record suggests that termination of anoxia was likely orbitally forced and superimposed on a dramatic oceanographic change.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have