Abstract
An interferometric astrometric mission, aiming at accuracies at around the10 microarcsec level, was recommended as a high priority concept within thenew ESA Horizon 2000+ scientific programme. The original outline concept forsuch a mission, GAIA, presented its general feasibility but did not addressmany questions of implementation or optimisation. Another concept of aninterferometer for a scanning astrometric satellite is presented. It containsa simpler optical telescope and a more efficient detector system. The designutilizes the full resolution of all light in the dispersed fringes of aFizeau interferometer. A preliminary optimization of the satellite indicatesthat two telescope units with a baseline of 100 cm will achieve a precisionof 3, 8, 22, 68, 302 microarcsec for parallaxes of stars with V = 12, 14, 16, 18, 20 mag, respectively, from a 5 year mission. Simultaneousspectrophotometry of the entire spectrum of each star will be obtained with aresolution corresponding to intermediate band photometry. The expectedprecision of this photometry is about 0.003 mag for V = 16. The performance is good in crowded fields, at least up to one star per 5 arcsec2. A Hipparcos-type beam combiner of 150 cm width is placed in front of atelescope with 4 square apertures of 50 cm. The assumed focal length is f = 60 m and the field 0.5 degree diameter. The detector consists of CCDs used for time delayed integration (drift-scan.)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have