Abstract
Whole-cell patch clamp recordings demonstrated that in the dentate gyrus (DG) as well as in the CA3 area of mouse hippocampal slices the prototypic P2X7 receptor (R) agonist dibenzoyl-ATP (Bz-ATP) induced inward current responses both in neurons and astrocytes. Whereas the selective P2X7R antagonist A438079 strongly inhibited both neuronal and astrocytic currents, a combination of ionotropic glutamate receptor (CNQX, AP-5) and GABAA-R (gabazine) antagonists depressed the Bz-ATP-induced current responses in the DG (granule cells) and CA3 neurons only. It was concluded that Bz-ATP activated astrocytic P2X7Rs and thereby released glutamate and GABA to stimulate nearby neurons. The residual A438079-resistant current response of astrocytes was suggested to be due to the stimulation of P2XRs of the non-P2X7-type. Further, we searched for presynaptic P2X7Rs at the axon terminals of DG and CA3 pyramidal neurons innervating CA3 and CA1 cells, respectively. Bz-ATP potentiated the frequency of spontaneous postsynaptic currents (sPSCs) in CA1 but not CA3 pyramidal cells. However, the Bz-ATP effect in CA1 cells was inhibited by gabazine or the astrocytic toxin fluorocitrate suggesting stimulation of P2X7Rs at stratum radiatum astrocytes located near to interneurons and synapsing onto CA1 neurons. Our data suggest that functional P2X7Rs are missing at neurons in the tri-synaptic network of the rodent hippocampus, but are present at nearby astrocytes indirectly regulating network activity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.