Abstract
Clonal permanent cell lines with astrocytic properties have been established from explant cultures of 8-day postnatal mouse cerebella after in vitro spontaneous transformation, i.e. without the addition of carcinogens or oncogenic viruses. The cell lines were derived in a multistage process. Slowly proliferating foci with several morphologies appeared 4 months after initiation of the cultures and became progressively enriched by cells with a homogeneous appearance. These cells could be established into permanent cell lines from which many clones were obtained. Some of these cloned cell lines bound anti-GFAP sera and therefore appeared to be astrocytic. According to their morphology, 3 separate types of these GFAP-positive clones could be distinguished. Type I and II cells had small somata; type I had several short processes, while type II had two processes, one of which was very thin and long ( 200 μm). Type III cells had large flat somata and no processes. The three types of clonal cell lines were labeled by monoclonal antibodies which bind to astrocytes in vivo. In particular, three monoclonal antibodies (BSP-3, M2 and M3) bound only to type II cells in a distinct pattern. Type I and II astrocytes are pseudodiploid and type III, heteroploid. The properties of these different clonal cell lines are very stable. We have thus obtained permanently established clonal cultures of mouse cerebellum astrocyte-like cells, which might be the in vitro counterparts of fibrous (type I), or velamentous (type III) astrocytes and of Golgi epithelial cells (type II).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have