Abstract

BackgroundTherapeutic angiogenesis by transplantation of autologous/allogeneic adipose stem cells (ADSCs) is a potential method for the treatment of critical limb ischemia (CLI). However, the therapeutic efficiency is limited by poor viability, adhesion, migration and differentiation after cell transplantation into the target area. Astragaloside IV (AS-IV), one of the main active components of Astragalus, has been widely used in the treatment of ischemic diseases and can promote cell proliferation and angiogenesis. However, there is no report on the effect of AS-IV on ADSCs and its effect on hindlimb ischemia through cell transplantation. PurposeThe purpose of this study was to elucidate that AS-IV pretreatment enhances the therapeutic effect of ADSC on critical limb ischemia, and to characterize the underlying molecular mechanisms. MethodsADSCs were obtained and pretreated with the different concentration of AS-IV. In vitro, we analyzed the influence of AS-IV on ADSC proliferation, migration, angiogenesis and recruitment of human umbilical vein endothelial cells (HUVECs) and analyzed the relevant molecular mechanism. In vivo, we injected drug-pretreated ADSCs into a Matrigel or hindlimb ischemia model and evaluated the therapeutic effect by the laser Doppler perfusion index, immunofluorescence, and histopathology. ResultsIn vitro experiments showed that AS-IV improved ADSC migration, angiogenesis and endothelial recruitment. The molecular mechanism may be related to the upregulation of CXC receptor 2 (CXCR2) to promote the phosphorylation of focal adhesion kinase (FAK). In vivo, Matrigel plug assay showed that ADSCs pretreated with AS-IV have stronger angiogenic potential. The laser Doppler perfusion index of the hindlimbs of mice in the ADSC/AS-IV group was significantly higher than the laser Doppler perfusion index of the hindlimbs of mice of the ADSC group and the control group, and the microvessel density was significantly increased. ConclusionOur results demonstrate that AS-IV pretreatment of ADSC improves their therapeutic efficacy in ameliorating severe limb exclusion symptomology through CXCR2 induced FAK phosphorylation, which will bring new insights into the treatment of severe limb ischemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call