Abstract

Photoaging is a degenerative biological process. As a kind of pluripotent stem cells, adipose-derived stem cells (ADSCs) are widely used in the treatment of photoaging. Therefore, we aimed to find an effective way to improve the antiaging ability of ADSCs. In this study, we isolated ADSCs and assessed multilineage differentiation ability and markers. Cultured ADSCs were preconditioned with astragaloside IV (ASI) at 10-7, 10-6, and 10-5 M. Cell proliferation was assessed by CCK-8 assay and cytokine secretion by enzyme-linked immunosorbent assay (ELISA). A fibroblast photoaging model was established and cocultured with normal ADSCs or ASI-treated ADSCs. Matrix metalloproteinase-1 (MMP1) and type I procollagen (PC-I) secreted by human dermal fibroblasts were measured by ELISA. The effects of ASI-treated ADSCs on skin texture, including dermal thickness, collagen content, and microvessel density, in a photoaging animal model were analyzed using H&E staining, Masson staining, and CD31 immunohistochemistry, respectively. We found that 10-6 M ASI could significantly promote cell proliferation and stimulate robust secretion of growth factors in ADSCs. Furthermore, our data showed that ASI-treated ADSCs could markedly reverse the ultraviolet B-induced decrease of PC-I secretion and increase of MMP-1 release in fibroblasts. Moreover, in photoaged skin of nude mice, ASI-treated ADSCs significantly increased dermal thickness, collagen content, and microvessel density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.