Abstract

Macrophages are the most abundant cells in tumor stroma and their polarization within tumor microenvironment exert the key roles in tumorigenesis. Astragaloside IV is a natural extract from traditional Chinese herbal Radix Astragali, and fulfills pleiotropic function in several cancers. Nevertheless, its function in ovarian cancer microenvironment remains elusive. In the present research, astragaloside IV exhibited little cytotoxicity within a certain dose range in THP-1 cells. Moreover, astragaloside IV suppressed the ratio of CD14+CD206+ cells in IL-4/IL-13-treated THP-1 macrophages and transcripts of M2 macrophage markers (including CD206, CCL24, PPARγ, Arg-1, IL-10), indicating the inhibitory effects of astragaloside IV on IL-4/IL-13-induced macrophage M2 polarization. Intriguingly, astragaloside IV antagonized M2 macrophages coculture-evoked cell proliferation, invasion and migration in ovarian cancer cells. During this process, administration with astragaloside IV restrained the high expression of high-mobility group box1 (HMGB1) and TLR4 in macrophages co-cultured with ovarian cancer cells, concomitant with decreases in release of M2 marker TGF-β, MMP-9 and IL-10. Moreover, targeting the HMGB1 signaling reversed M2 macrophages-induced ovarian cancer cell proliferation, invasion and migration. Noticeably, exogenous HMGB1 overturned the inhibitory efficacy of astragaloside IV against macrophage M2 polarization-evoked malignant potential in ovarian cancer cells. Together, these findings suggest that astragaloside IV may protect against M2 macrophages-evoked malignancy in ovarian cancer cells by suppressing the HMGB1-TLR4 signaling. Therefore, astragaloside may alleviate the progression of ovarian cancer by regulating macrophage M2 polarization within tumor microenvironment, implying a promising therapeutic strategy against ovarian cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call