Abstract

BACKGROUND Our study investigated the role of FAM53B in regulating macrophage M2 polarization and its potential mechanisms in promoting pancreatic ductal adenocarcinoma (PDAC) metastasis. AIM To further investigate the role of FAM53B in regulating macrophage M2 polarization and its potential mechanism in promoting PDAC metastasis. Our goal is to determine how FAM53B affects macrophage M2 polarization and to define its underlying mechanism in PDAC metastasis. METHODS Cell culture and various experiments, including protein analysis, immunohistochemistry, and animal model experiments, were conducted. We compared FAM53B expression between PDAC tissues and healthy tissues and assessed the correlation of FAM53B expression with clinical features. Our study analyzed the role of FAM53B in macrophage M2 polarization in vitro by examining the expression of relevant markers. Finally, we used a murine model to study the role of FAM53B in PDAC metastasis and analyzed the potential underlying mechanisms. RESULTS Our research showed that there was a significant increase in FAM53B levels in PDAC tissues, which was linked to adverse tumor features. Experimental findings indicated that FAM53B can enhance macrophage M2 polarization, leading to increased anti-inflammatory factor release. The results from the mouse model further supported the role of FAM53B in PDAC metastasis, as blocking FAM53B prevented tumor cell invasion and metastasis. CONCLUSION FAM53B promotes PDAC metastasis by regulating macrophage M2 polarization. This discovery could lead to the development of new strategies for treating PDAC. For example, interfering with the FAM53B signaling pathway may prevent cancer spread. Our research findings also provide important information for expanding our understanding of PDAC pathogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call