Abstract

Element diffusion is expected to occur in all kinds of stars : according to the relative effect of gravitation and radiative acceleration, they can fall or be pushed up in the atmospheres. Helium sinks in all cases, thereby creating a gradient at the bottom of the convective zones. This can have important consequences for the sound velocity, as has been proved in the sun with helioseismology. We investigate signatures of helium diffusion in late F-type stars by asteroseismology. Stellar models were computed with different physical inputs (with or without element diffusion) and iterated in order to fit close-by evolutionary tracks for each mass. The theoretical oscillation frequencies were computed and compared for pairs of models along the tracks. Various asteroseismic tests (large separations, small separations, second differences) were used and studied for the comparisons. The results show that element diffusion leads to changes in the frequencies for masses larger than 1.2 Msun. In particular the helium gradient below the convective zone should be detectable through the second differences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call