Abstract

The solar evolution has been calculated including all the effects of the diffusion of helium and heavy elements. Monochromatic opacities are used to calculate radiative accelerations and Rosseland opacities at each evolution time step, taking into account the local abundance changes of all important (21) chemical elements. The OPAL monochromatic data are used for the opacities and the radiative accelerations. The Opacity Project data are needed to calculate how chemical species and electrons share the momentum absorbed from the radiation flux. A detailed evaluation of the impact of atomic diffusion on solar models is presented. On some elements thermal diffusion adds approximately 50% to the gravitational settling velocity. While gravitational settling had been included in previous solar models, this is the first time that the impact of radiative accelerations is considered. Radiative accelerations can be up to 40% of gravity below the solar convection zone and thus affect chemical element diffusion significantly, contrary to current belief. Up to the solar age, the abundances of most metals change by 7.5% if complete ionization is assumed, but by 8.5%-10% if detailed ionization of each species is taken into account. If radiative accelerations are included, intermediate values are obtained. Diffusion leads to a change of up to 8% in the Rosseland opacities, compared to those of the original mixture. Most of this effect can be taken into account by using tables with several values of Z. If one isolates the effects of radiative accelerations, the abundance changes they cause alter the Rosseland opacity by up to 0.5%; the density is affected by up to 0.2%; the sound speed is affected by at most 0.06%. The inclusion of radiative accelerations leads to a reduction of 3% of neutrino fluxes measured with 37Cl detectors and 1% measured with 71Ga detectors. The partial transformation of C and O into N by nuclear reactions in the core causes a ~1% change in the opacities that cannot be modeled by a change in Z alone. The evolution is allowed to proceed to 1010 yr in order to determine the impact at the end of the main-sequence life of solar-type stars. It is found that immediately below the convection zone, the radiative acceleration on some iron peak elements is within a few percent of gravity. The abundance anomalies reach 18% for He in the convection zone but are kept within 12% and 15% for most because of grad. They would have reached 18% in the absence of grad.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call