Abstract

The Neoproterozoic Wadi Kid metamorphic belt in southeastern Sinai in Egypt represents a structurally and metamorphically complex assemblage of metasedimentary and metavolcanic rocks folded into a series of ENE–WSW-trending antiforms and synforms. Geological mapping in this region is challenging, primarily due to difficult access, complexity of structures, and lack of resolution and areal integrity of lithological differentiation using conventional mapping techniques. Spectral ratioing of selected bands of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the area, in synergy with geological field observation, proved effective in resolving geological mapping problems in the region. A new ASTER band-ratio image 4/7-4/6-4/10 is applied successfully for lithological mapping in the Wadi Kid area, showing improvement over previous techniques in detailing the main rock units. These are gneiss and migmatite, amphibolite, volcanogenic sediments with banded iron formation, meta-pelites, talc schist, meta-psammites, meta-acidic volcanics, meta-pyroclastics volcaniclastics, albitites and granitic rocks. Validating the use of the new ASTER band-ratio image relied on both calculating statistical optimum index factor (OIF) and matching interpreted lithological boundaries to field data and previously published geologic maps. The adopted ASTER band-ratio image demonstrates the benefit of using ASTER remote sensing data in lithological mapping of the Wadi Kid area and therefore for lithological mapping in the Arabian–Nubian shield and other arid areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call