Abstract

The storage capacity, noise performance, and synthesis of associative memories for image analysis are considered. Associative memory synthesis is shown to be very similar to that of linear discriminant functions used in pattern recognition. These lead to new associative memories and new associative memory synthesis and recollection vector encodings. Heteroassociative memories are emphasized in this paper, rather than autoassociative memories, since heteroassociative memories provide scene analysis decisions, rather than merely enhanced output images. The analysis of heteroassociative memories has been given little attention. Heteroassociative memory performance and storage capacity are shown to be quite different from those of autoassociative memories, with much more dependence on the recollection vectors used and less dependence on M/N. This allows several different and preferable synthesis techniques to be considered for associative memories. These new associative memory synthesis techniques and new techniques to update associative memories are included. We also introduce a new SNR performance measure that is preferable to conventional noise standard deviation ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call