Abstract
Ambient particles with a median aerodynamic diameter of <2.5 µm (PM2.5) is a ubiquitous air pollutant with established adverse health consequences. While postulated to promote a systemic inflammatory response, limited studies have demonstrated changes in serum biomarkers related to PM2.5 exposure. We aim to examine associations between short-term PM2.5 exposure and commonly measured biomarkers known to be affected by inflammation among patients receiving maintenance in-center hemodialysis. We conducted a retrospective open cohort study from January 1, 2008, to December 31, 2014. Adult hemodialysis patients were identified from the United States Renal Data System and linked at the patient level to laboratory data from a large dialysis organization. Daily ambient PM2.5 was estimated on a 1-km grid and assigned to cohort patients based on the ZIP codes of dialysis clinics. Serum albumin, serum ferritin, transferrin saturation (TSAT), and serum hemoglobin were ascertained from the dialysis provider organization database. Mixed-effect models were used to assess the changes in biomarker levels associated with PM2.5 exposure. The final cohort included 173,697 hemodialysis patients. Overall, the daily ZIP-level ambient PM2.5 averages were 8.4-8.5 µg/m3. A 10-µg/m3 increase in same-day ambient PM2.5 exposure was associated with higher relative risks of lower albumin (relative risk [RR], 1.01; 95% confidence interval [95% CI], 1.01 to 1.02) and lower hemoglobin (RR, 1.02; 95% CI, 1.01 to 1.03). Associations of same-day ambient PM2.5 exposure and higher ferritin and lower TSAT did not reach statistical significance. Short-term PM2.5 exposure was associated with lower serum hemoglobin and albumin among patients receiving in-center hemodialysis. These findings lend support to the role of inflammation in PM2.5 exposure-outcome associations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.