Abstract
Background:Maternal exposure to environmental chemicals during pregnancy can influence various maternal and offspring health parameters. Modification of maternal metabolism by environmental exposure may be an important pathway for these impacts. However, there is limited evidence regarding exposure to a wide array of chemicals and the metabolome during pregnancy.Objectives:We investigated the relationship between the urinary exposome and metabolome during pregnancy.Methods:Urine samples were collected in the first and third trimesters from 1,024 pregnant women recruited in prenatal clinics in Jiangsu Province, China. The exposome was analyzed using the first trimester sample with ultra-high performance liquid chromatography–high resolution accurate mass spectrometry (UHPLC-HRMS) and inductively coupled plasma mass spectrometry. The metabolome was analyzed using the third trimester sample with UHPLC-HRMS. We evaluated associations between each of 106 exposures in the first trimester with 139 metabolites in the third trimester.Results:We identified 1,245 significant associations (, Bonferroni correction) between chemical exposures and maternal metabolism during pregnancy. Among elements, the largest number of the significant metabolic associations were observed for magnesium, and among organic compounds, for 4--octylphenol. We used exposome–metabolome associations to explore mechanisms underlying published associations between prenatal chemical exposures and offspring health outcomes. This integration of the literature with our results suggests that reported associations between 10 analytes and birth weight, gestational age, fat deposition, neurobehavioral development, immunological disorders, and hypertension may be partially mediated by metabolites associated with these exposures.Discussion:This high-dimensional analysis of the urinary exposome and metabolome identified many associations between chemical exposures and maternal metabolism during pregnancy. Integration of these associations with the literature on health outcomes of exposure suggests that environmental modulation of the maternal metabolome may play a role in the association between prenatal exposure on pregnancy and child health outcomes. https://doi.org/10.1289/EHP9745
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have