Abstract

The wave-like patterns of ovarian follicular development in cattle can be manipulated by shortening the luteal phase with prostaglandin F 2α (PGF), lengthening the period of follicle dominance with progesterone or curtailing follicle development with GnRH or oestradiol as 17β, benzoate or cypionate. These hormones can also be used to synchronise ovulation allowing timed inseminations without detected oestrus. Progesterone, PGF, GnRH and oestradiol benzoate have each been used to increase conception rates in some situations, but their use has reduced them in others. For example, inseminations made within 96 h of a single injection of PGF administered during the luteal phase were associated with increased conception rates in dairy cows whereas double injection protocols reduced conception rates. The three forms of oestradiol and GnRH have greater effects on follicular development following divergence and dominance than following wave emergence. This can mean that follicles of differing maturity will be present about 7 days later and can result in varied intervals to the onset of oestrus following a PGF injection. The consequent variation in ovulation time can be reduced by injecting GnRH or an oestradiol during pro-oestrus. This means that some less mature follicles will ovulate, forming corpus luteum (CL) associated with a slower rise in plasma progesterone and lower mid-luteal concentrations. The lower conception rates recorded with single timed inseminations with synchronised ovulations have been associated with increased prevalences of short cycles in lactating dairy cows (with GnRH), with long luteal phases in cows and heifers (with oestradiol benzoate) and with embryo loss following positive pregnancy diagnosis (as with Ovsynch in lactating Holstein cows). Extensive Canadian studies have demonstrated that these same hormones can be successfully used without these limitations and reliably obtaining conception rates over 50% and up to 70% in beef cattle that have been supplemented with a progestin during the period of ovarian follicle synchronisation. The inherently lower fertility of Holstein cows during early lactation may be contributing to the reduced effectiveness of hormonal treatments for synchronised follicle development and ovulation. The role of reduced dose rates of GnRH in compromising this effectiveness needs to be determined if the potential of these treatments realised with beef cattle is to be achieved with lactating Holstein cows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call