Abstract

Cumulus-oocyte complex (COC) expansion and oocyte maturation are crucial processes for embryo development and fertility across species. Although miR-29b has been detected in porcine ovarian granulosa cells, its specific role in regulating oocyte maturation remains largely unknown. In this study, using the pig as a model, we report that over-expression of miR-29b lead to a decrease of COC expansion area and inhibits oocyte maturation (P<0.05). This suppression correlated with a decrease expression of COC-expansion-associated genes, including SHAS2, ADAMTS1, ADAMTS2, ADAMTS17 and PTX 3 in both mural granulosa cells (mGCs) and cumulus granulosa cells (cGCs). Further investigation revealed that miR-29b over-expression induces reactive oxygen species (ROS) accumulation in both mGCs and cGCs, conversely, knock-down of miR-29b reverses all these effects. Treatment with the antioxidant β-mercaptoethanol alleviates ROS accumulation, rescues COC expansion and restores oocyte polar body formation impaired by miR-29b mimics. Computational analysis predicted CYCS, the gene encoding cytochrome C, as a potential target of miR-29b. Subsequent examination demonstrated that miR-29b downregulates CYCS at both mRNA and protein levels. Dual-luciferase reporter assays further confirmed that miR-29b interacts with the 3’-untranslated region (3’UTR) of CYCS. Over-expression of CYCS decreases ROS accumulation and promotes COC expansion (P<0.05). These results indicate that miR-29b regulates COC expansion and oocyte maturation in vitro by inducing ROS, likely through targeting of CYCS. This study sheds light on the role of miR-29b in oocyte maturation and provides insight into the regulatory function of miRNAs in ovarian physiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.