Abstract
The roles of amyloid-β and tau in the degenerative process of Alzheimer's disease (AD) remain uncertain. [18F]AV-45 and [18F]AV-1451 PET quantify amyloid-β and tau pathology, respectively, while diffusion tractography enables detection of their microstructural consequences. Examine the impact of amyloid-β and tau pathology on the structural connectome and cognition, in mild cognitive impairment (MCI) and AD. Combined [18F]AV-45 and [18F]AV-1451 PET, diffusion tractography, and cognitive assessment in 28 controls, 32 MCI, and 26 AD patients. Hippocampal connectivity was reduced to the thalami, right lateral orbitofrontal, and right amygdala in MCI; alongside the insula, posterior cingulate, right entorhinal, and numerous cortical regions in AD (all p < 0.05). Hippocampal strength inversely correlated with [18F]AV-1451 SUVr in MCI (r = -0.55, p = 0.049) and AD (r = -0.57, p = 0.046), while reductions in hippocampal connectivity to ipsilateral brain regions correlated with increased [18F]AV-45 SUVr in those same regions in MCI (r = -0.33, p = 0.003) and AD (r = -0.31, p = 0.006). Cognitive scores correlated with connectivity of the right temporal pole in MCI (r = -0.60, p = 0.035) and left hippocampus in AD (r = 0.69, p = 0.024). Clinical Dementia Rating Scale scores correlated with [18F]AV-1451 SUVr in multiple areas reflecting Braak stages I-IV, including the right (r = 0.65, p = 0.004) entorhinal cortex in MCI; and Braak stages III-VI, including the right (r = 0.062, p = 0.009) parahippocampal gyrus in AD. Reductions in hippocampal connectivity predominate in the AD connectome, correlating with hippocampal tau in MCI and AD, and with amyloid-β in the target regions of those connections. Cognitive scores correlate with microstructural changes and reflect the accumulation of tau pathology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have