Abstract

Lead (Pb) in the soil affects the growth and development of plants and causes damages to the human body through the food chain. Here, we identified and cloned a Pb-tolerance gene ZmPIP2;5 based on a weighted gene co-expression network analysis and gene-based association studies. We showed that ZmPIP2;5 encodes a plasma membrane aquaporin and positively regulated Pb tolerance and accumulation in Arabidopsis and yeast. Overexpression of ZmPIP2;5 increased root length and fresh weight of Arabidopsis seedlings under Pb stress. Heterologous expression of ZmPIP2;5 in yeast caused the enhanced growth speed under Pb treatment and Pb accumulation in yeast cells. A (T/A) SNP in the ZmPIP2;5 promoter affected the expression abundance of ZmPIP2;5 and thereby led to the difference in Pb tolerance among different maize lines. Our study helps to understand the mechanism underlying plant tolerance to Pb stress and provides new ideas for breeding Pb-tolerance maize varieties via molecular marker-assisted selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.