Abstract
Extensive lead (Pb) absorption by plants affects their growth and development and causes damage to the human body by entering the food chain. In this study, we cloned ZmHIPP, a gene associated with Pb tolerance and accumulation in maize, using combined linkage mapping and weighted gene co-expression network analysis. We show that ZmHIPP, which encodes a heavy metal-associated isoprenylated plant protein, positively modulated Pb tolerance and accumulation in maize seedlings, Arabidopsis, and yeast. The genetic variation locus (A/G) in the promoter of ZmHIPP contributed to the phenotypic disparity in Pb tolerance among different maize inbred lines by altering the expression abundance of ZmHIPP. Knockdown of ZmHIPP significantly inhibited growth and decreased Pb accumulation in maize seedlings under Pb stress. ZmHIPP facilitated Pb deposition in the cell wall and prevented it from entering the intracellular organelles, thereby alleviating Pb toxicity in maize seedlings. Compared to that in the mutant zmhipp, the accumulated Pb in the wild-type line mainly consisted of the low-toxicity forms of Pb. Our study increases the understanding of the mechanism underlying Pb tolerance in maize and provides new insights into the bioremediation of Pb-polluted soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.