Abstract

Variations in the dynamics of the oceanic lithosphere are important at the societal and research levels because geological activities are associated with these variations. At any given section of the lithosphere, the time in which typical geophysical parameters vary is considerably smaller than section’s age. The lithosphere can, therefore, be assumed to proceed from one state of dynamic equilibrium to another displaced differentially. When these conditions are accounted for in the thermal analysis of the oceanic lithosphere, the earth’s internal heat flux through the lithosphere is found to be an adiabatic invariant. Lithosphere physical parameters exhibit constant change and linearity. These findings simplify analysis of heat and work interactions between oceanic lithosphere and continents, lithosphere dynamics, and deep mantle heat transfer. The temperature of the solid earth remains unchanged for the foreseeable future, and variations in sea temperature vary the intensity of geological activities. If sea temperature increases, the geological activities increase and vice versa. Relevant equations are derived using this thermal analysis of the lithosphere and validated based on observations and the work of others. In addition, the analysis reveals that the eleven-year solar constant cycle is capable of inducing 1.56 x 1016 J yr-1 of geological activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call