Abstract

Epicardial fat located adjacent to the heart and coronary arteries is associated with increased cardiovascular risk. Irisin is a myokine produced by skeletal muscle after physical exercise, and originally described as a molecule able to promote the browning of white adipose tissue and energy expenditure. In order to decrease cardiovascular risk, it has been proposed as a promising therapeutic target in obesity and type 2 diabetes. We investigated the relationships between serum concentrations of irisin and the adipokines adiponectin and leptin and body fat including epicardial fat in patients undergoing cardiovascular surgery. We obtained serum samples from 93 patients undergoing cardiovascular surgery (age 69.6 (SD 12.8) years, BMI 24.1 ± 4.8 kg/m2). Computed tomography (CT) and echocardiographic data were obtained from the routine preoperative examination. Subcutaneous fat area (SFA, cm2) and visceral fat area (VFA, cm2) near the umbilicus were automatically measured using the standard fat attenuation range. Epicardial fat area (EFA, cm2) was measured at the position where the heart became a long axis image with respect to the apex of the heart in the coronal section image. Total body fat mass, body fat percentage, and skeletal muscle volume (SMV) were estimated using bioelectrical impedance analysis (BIA). Serum irisin concentration was measured by enzyme-linked immunosorbent assay, and compared with adiponectin and leptin concentrations. The data were also compared with the clinical biochemical data. EFA was strongly correlated with BMI (P = 0.0001), non-HDL-C (P = 0.029), TG (P = 0.004), body fat mass (P = 0.0001), and body fat percentage (P = 0.0001). Serum leptin concentration showed a significant positive correlation with BMI (P = 0.0001) and TG (P = 0.001). Adiponectin, but not irisin, showed a significant negative correlation with BMI (P = 0.006) and TG (P = 0.001). Serum leptin level had a significant positive correlation with EFA, VFA, and SFA. In contrast, the serum adiponectin level was significantly negatively correlated with EFA, VFA, and SFA. The serum irisin level was also negatively correlated with EFA (r = -0.249, P = 0.015), and SFA (r = -0.223, P = 0.039), and tended to correlate with VFA (r = -0.198, P = 0.067). The serum level of adiponectin was negatively correlated with that of leptin (r = -0.296, P = 0.012), but there were no significant correlations between irisin and either adiponectin or leptin. Multivariate linear regression demonstrated that EFA showed a positive association with serum leptin level (β = 0.438, P = 0.0001) and a negative correlation with serum irisin level (β = -0.204, P = 0.038) and serum adiponectin level (β = -0.260, P = 0.015) after adjusting for age, sex, and BMI. The present study provided the first evidence of associations of the serum irisin and adipokines (adiponectin and leptin) concentrations with epicardial fat in cardiovascular surgery patients. Irisin may play a role in preventing excess adiposity including epicardial fat, and consequently cardiovascular risk in patients.

Highlights

  • Adipose tissue is a lipid storage unit, but it functions as a paracrine and endocrine organ, secreting a number of adipocytokines such as leptin, adiponectin and tumor necrosis factor-α (TNF-α), which have proinflammatory, atherogenic, or protective effects, and contribute to unfavorable metabolic and cardiovascular risk factors [1,2]

  • Multivariate linear regression demonstrated that Epicardial fat area (EFA) showed a positive association with serum leptin level (β = 0.438, P = 0.0001) and a negative correlation with serum irisin level (β = -0.204, P = 0.038) and serum adiponectin level (β = -0.260, P = 0.015) after adjusting for age, sex, and body mass index (BMI)

  • The present study showed that the serum leptin concentration was significantly lower in males than in females, and it had a significant positive correlation with the EFA, Visceral fat area (VFA), Subcutaneous fat area (SFA) as well as BMI, body fat mass, and body fat percentage

Read more

Summary

Introduction

Adipose tissue is a lipid storage unit, but it functions as a paracrine and endocrine organ, secreting a number of adipocytokines such as leptin, adiponectin and tumor necrosis factor-α (TNF-α), which have proinflammatory, atherogenic, or protective effects, and contribute to unfavorable metabolic and cardiovascular risk factors [1,2]. EAT, which interacts locally with the myocardium and coronary arteries, is a metabolically active organ that has a high rate of secretion of inflammatory adipokines such as TNF-α [1,4]. It is an important source of adiponectin, an anti-inflammatory and anti-atherogenic adipokine. EAT and adipokines released from its adipose tissue play an important role in diseases such as obesity, metabolic syndrome, and cardiovascular diseases, including CAD [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call