Abstract
We estimated the key molecules related to Type 2 diabetes mellitus (T2DM) in adipose, liver, and muscle tissues, from nonobese diabetic Goto-Kakizaki (GK) rats and their Wistar controls, by computationally analyzing the expression profiles in open source data. With the aid of information from previous reports, Rev-erbα in adipose tissue emerged as one of the most plausible candidates. Here, in animal models, including GK rats surgically treated to ameliorate T2DM, we examined the association of Rev-erbα in adipose tissue with T2DM progression. After analyses of the Rev-erbα mRNA expression in the adipose tissue of our animal models, we compared the Rev-erbα protein expression levels in the adipose, liver, and muscle tissues of GK and Wistar controls at the ages of 1 mo (M), 3M, and 6M. The Rev-erbα protein levels in adipose tissue showed a distinctive pattern, with the negative correlation of an increasing trend in GK rats, and a decreasing trend in Wistar rats during aging, from those in liver and muscle tissues. Moreover, dysregulation of the circadian Rev-erbα expression in the adipose tissue of 6-mo-old GK rats was also observed. In particular, we ameliorated T2DM in GK rats by gastric bypass surgery, and revealed that T2DM amelioration in diabetic GK rats was associated with improved circadian Rev-erbα expression, in a comparison between the surgically treated and untreated GK rats. The roles of Rev-erbα in adipose tissue were further investigated by observations of Rev-erbα-related molecules, with reference to previous reports.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have