Abstract

Background and objectives: Acute myeloid leukemia (AML) is a hematological malignancy characterized by uncontrolled proliferation of immature myeloid cells. Immune checkpoint molecules such as programmed cell death protein 1 (PD-1) and lymphocyte activation gene-3 (LAG-3) are essential for controlling anti-tumor immune responses. This study aims to explore the correlation between specific genetic variations (SNPs) in the PDCD1 (rs2227981) and LAG3 (rs12313899) genes and the likelihood of developing AML in the Saudi population. Material and methods: total of 98 Saudi AML patients and 131 healthy controls were genotyped for the PDCD1 rs2227981 and LAG3 rs12313899 polymorphisms using TaqMan genotyping assays. A logistic regression analysis was conducted to evaluate the relationship between the SNPs and AML risk using several genetic models. Results: The results revealed a significant association between the PDCD1 rs2227981 polymorphism and increased AML risk. In AML patients, the frequency of the G allele was considerably greater than in healthy controls (OR = 1.93, 95% CI: 1.31–2.81, p = 0.00080). The GG and AG genotypes were associated with a very high risk of developing AML (p < 0.0001). In contrast, no significant association was observed between the LAG3 rs12313899 polymorphism and AML risk in the studied population. In silico analysis of gene expression profiles from public databases suggested the potential impact of PDCD1 expression levels on the overall survival of AML patients. Conclusions: This study provides evidence for the association of the PDCD1 rs2227981 polymorphism with an increased risk for AML in the Saudi population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call