Abstract

Somatic mutations causing clonal expansion of hematopoietic cells (clonal hematopoiesis of indeterminate potential [CHIP]) are increased with age and associated with atherosclerosis and inflammation. Age and inflammation are the major risk factors for heart failure, yet the association of CHIP with heart failure in humans is unknown. To assess the potential prognostic significance of CHIP in patients with chronic heart failure (CHF) owing to ischemic origin. We analyzed bone marrow-derived mononuclear cells from 200 patients with CHF by deep targeted amplicon sequencing to detect the presence of CHIP and associated such with long-term prognosis in patients with CHF at University Hospital Frankfurt, Frankfurt, Germany. Data were analyzed between October 2017 and April 2018. Median age of the patients was 65 years. Forty-seven mutations with a variant allele fraction (VAF) of at least 0.02 were found in 38 of 200 patients with CHF (18.5%). The somatic mutations most commonly occurred in the genes DNMT3A (14 patients), TET2 (9 patients), KDM6A (4 patients), and BCOR (3 patients). Patients with CHIP were older and more frequently had a history of hypertension. During a median follow-up of 4.4 years, a total of 53 patients died, and 23 patients required hospitalization for heart failure. There was a significantly worse long-term clinical outcome for patients with either DNMT3A or TET2 mutations compared with non-CHIP carriers. By multivariable Cox proportional regression analysis, the presence of somatic mutations within TET2 or DNMT3A (HR, 2.1; 95% CI, 1.1-4.0; P = .02, for death combined with heart failure hospitalization) and age (HR, 1.04; 95% CI, 1.01-1.07 per year; P = .005) but not a history of hypertension remained independently associated with adverse outcome. Importantly, there was a significant dose-response association between VAF and clinical outcome. Our data suggest that somatic mutations in hematopoietic cells, specifically in the most commonly mutated CHIP driver genes TET2 and DNMT3A, may be significantly associated with the progression and poor prognosis of CHF. Future studies will have to validate our findings in larger cohorts and address whether targeting specific inflammatory pathways may be valuable for precision medicine in patients with CHF carrying specific mutations encoding for CHIP.

Highlights

  • By multivariable Cox proportional regression analysis, the presence of somatic mutations within TET2 or DNMT3A (HR, 2.1; 95% CI, 1.1-4.0; P = .02, for death combined with heart failure hospitalization) and age (HR, 1.04; 95% CI, 1.01-1.07 per year; P = .005) but not a history of hypertension remained independently associated with adverse outcome

  • Our data suggest that somatic mutations in hematopoietic cells, in the most commonly mutated clonal hematopoiesis of indeterminate potential (CHIP) driver genes TET2 and DNMT3A, may be significantly associated with the progression and poor prognosis of chronic heart failure (CHF)

  • Future studies will have to validate our findings in larger cohorts and address whether targeting specific inflammatory pathways may be valuable for precision medicine in patients with CHF carrying specific mutations encoding for CHIP

Read more

Summary

Methods

Study Cohort Clinical data and biological specimens (BMC) were collected from a total of 200 patients with CHF and participating in different trials examining the effects of intracoronary administration of autologous BMCs between June 2005 and July 2017 at the University Hospital of the Goethe University, Frankfurt/Main, Germany. All patients provided written informed consent for 1 of the following registered clinical trials: Transplantation of Progenitor Cells and Recovery of Left Ventricular Function in Patients with Chronic Ischemic Heart Disease (TOPCARE-CHD; Crossover or Registry; n = 134; NCT00289822 or NCT0096236412,13), Cellwave (n = 55; NCT0032698914) or Repetitive Progenitor Cell Therapy in Advanced Chronic Heart Failure (REPEAT; n = 11; NCT 0169304213). Patients were eligible for inclusion into the study if they had stable CHF symptoms New York Heart Association (NYHA) classification of at least II, had a previous successfully revascularized myocardial infarction at least 3 months before bone marrow aspiration, and had a well-demarcated region of left ventricular dysfunction on echocardiography. Exclusion criteria were the presence of acutely decompensated heart failure with NYHA class IV, an acute ischemic event within 3 months prior to inclusion, a history of severe

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call