Abstract

Background: Atrial natriuretic peptide increases lipolysis in human adipocytes by binding to natriuretic peptide receptor-A (NPRA). The aim of the current study was to examine the associations of NPRA mRNA of subcutaneous adipose tissue with fat mass, fat-free mass, body mass index (BMI) and arterial blood pressure in medication-free healthy men. Method: Thirty-two volunteers [age (years): 36.06±7.36, BMI: 27.60±4.63 (kg/m 2)] underwent assessments of body height/weight, % fat mass, fat-free mass (kg), blood pressure, and a subcutaneous adipose tissue biopsy via a surgical technique. Results: We found that NPRA mRNA was negatively associated with % fat mass (r=-0.40, R 2=0.16, p=0.03) and BMI (r=-0.45, R 2=0.20, p=0.01). Cohen's f 2 effect size analyses showed a small effect size between NPRA mRNA and BMI ( f 2 =0.25). One-way analysis of variance with Bonferroni post-hoc tests showed a tendency for mean differences of NPRA mRNA across BMI categories (p=0.06). This was confirmed by Cohen's d effect size analyses revealing a large effect size of NPRA mRNA between obese individuals (BMI≥30 kg/m 2) and either normal weight (BMI=19-25 kg/m 2; d=0.94) or overweight (BMI=25-30 kg/m 2; d=1.12) individuals. Conclusions: NPRA mRNA is negatively associated with % fat mass and BMI in medication-free healthy men, suggesting a possible role of NPRA in the control of fat mass accumulation.

Highlights

  • Atrial natriuretic peptide (ANP) lowers arterial pressure to maintain fluid volume homeostasis, protecting against renal and cardiac pathogenesis[1]

  • No associations were found between natriuretic peptide receptor-A (NPRA) mRNA and fat-free mass (FFM), systolic or diastolic blood pressure (BP) (p>0.05)

  • We have shown that the NPRA mRNA is negatively associated with %fat mass (FM) and body mass index (BMI) in medication-free healthy men and that it is expressed less in obese compared to lean individuals

Read more

Summary

Introduction

Atrial natriuretic peptide (ANP) lowers arterial pressure to maintain fluid volume homeostasis, protecting against renal and cardiac pathogenesis[1]. The aim of the current study was to examine the associations of NPRA mRNA of SAT with fat mass, fat-free mass (FFM), body mass index (BMI) and arterial blood pressure (BP) in medication-free healthy men. The aim of the current study was to examine the associations of NPRA mRNA of subcutaneous adipose tissue with fat mass, fat-free mass, body mass index (BMI) and arterial blood pressure in medication-free healthy men. One-way analysis of variance with Bonferroni post-hoc tests showed a tendency for mean differences of NPRA mRNA across BMI categories (p=0.06) This was confirmed by Cohen’s d effect size analyses revealing a large effect size of NPRA mRNA between obese individuals (BMI≥30 kg/m2) and either normal weight (BMI=19-25 kg/m2; d=0.94) or overweight (BMI=25-30 kg/m2; d =1.12) individuals. Conclusions: NPRA mRNA is negatively associated with % fat mass and BMI in medication-free healthy men, suggesting a possible role of NPRA in the control of fat mass accumulation

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call