Abstract
The presence of microbial biofilms in many human chronic wounds led to the hypothesis that biofilms delay healing of these wounds. We tested this hypothesis in a population of 117 older individuals with venous leg ulcers who were receiving standardised therapy, including frequent debridement. Debridement specimens were analysed for the amount of bacterial biomass by two independent methods: a microscopic approach that scored the relative size and number of bacterial aggregates, interpreted as a biofilm metric, and conventional enumeration by agar plating for viable bacteria. The plating protocol yielded three distinct values: the total viable bacterial count, bleach-tolerant bacteria, and the log reduction in viable bacteria upon bleach treatment. Wound healing rates over an 8-week observation period were calculated as the rate of decrease of the equivalent diameter of the wound. There was no statistically significant association between wound healing and the biofilm metric in any of the three analyses performed (p ≥0.15). In all three statistical tests, wound healing was associated with the log reduction caused by bleach treatment (p ≤0.004); wounds that harboured bacteria that were more bleach-susceptible healed more slowly. A refinement of the model of chronic wound infection pathogenesis is proposed in which dormant bacteria constitute a persistent nidus and outgrowth of metabolically active cells impairs healing. This model constitutes a new hypothesis as metabolic activity was not directly measured in this investigation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.