Abstract
The base excision repair (BER) pathway, containing OGG1, MTH1 and MUTYH, is a major protector from oxidative DNA damage in humans, while 8-oxoguanine (8-OHdG), an index of DNA oxidation, is increased in maintenance hemodialysis (HD) patients. Four polymorphisms of BER genes, OGG1 c.977C > G (rs1052133), MTH1 c.247G > A (rs4866), MUTYH c.972G > C (rs3219489), and AluYb8MUTYH (rs10527342), were examined in 337 HD patients and 404 healthy controls. And the 8-OHdG levels in leukocyte DNA were examined in 116 HD patients. The distribution of MUTYH c.972 GG or AluYb8MUTYH differed between the two groups and was associated with a moderately increased risk for end-stage renal disease (ESRD) (P = 0.013 and 0.034, resp.). The average 8-OHdG/106 dG value was significantly higher in patients with the OGG1 c.977G, MUTYH c.972G or AluYb8MUTYH alleles (P < 0.001 via ANOVA). Further analysis showed that combination of MUTYH c.972GG with OGG1 c.977GG or AluYb8MUTYH increased both the risk for ESRD and leukocyte DNA 8-OHdG levels in HD patients. Our study showed that MUTYH c.972GG, AluYb8MUTYH, and combination of OGG1 c.977GG increased the risk for ESRD development in China and suggested that DNA oxidative damage might be involved in such process.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.