Abstract

8-Hydroxy 2'-deoxyguanosine (8-OHdG) of leukocyte DNA has been identified as a surrogate marker of oxidative stress in chronic hemodialysis (HD) patients. In this study, we focused on the determinants of the 8-OHdG level in leukocyte DNA of HD patients. We further investigated the influence of vitamin E-modified, regenerated cellulose (CL-E) membrane on the oxidative DNA damage, intracellular reactive oxygen species (ROS) production of granulocytes, and plasma alpha-tocopherol concentration. 8-OHdG content in cellular DNA of leukocytes was measured by a high-performance liquid chromatography-electrochemical detection (HPLC-ECD) method. Intracellular production of ROS, H2O2 and O2-. were analyzed by flow cytometry in leukocytes with and without phorbol-12-myristate-13-acetate (PMA) stimulation before dialysis, as well as at 15 and 30 minutes of dialysis. Plasma alpha-tocopherol concentration was measured by a HPLC method, and the value of alpha-tocopherol was corrected by total blood lipid concentration. In the prospective cross sectional study, the mean 8-OHdG level in leukocyte DNA was equally lower in the patients of the CL-E, polymethylmethacrylate (PMMA), and polysulfone (PS) groups as compared with the cellulosic group (ANOVA, P < 0.001). The leukocyte 8-OHdG level correlated negatively with plasma alpha-tocopherol and blood lipid-adjusted plasma alpha-tocopherol, but correlated positively with serum iron and percentage of transferrin saturation. Forward stepwise multiple regression showed that dialysis membrane type, serum iron, and blood lipid-adjusted plasma alpha-tocopherol were the independent determinants of the leukocyte 8-OHdG level in HD patients. Like synthetic membranes, granulocyte ROS production was less augmented during dialysis with the CL-E membrane as compared with the cellulose membrane. Exposure to cellulose membrane impaired intracellular ROS production of granulocytes in response to PMA challenge, whereas the CL-E and synthetic membranes improved the granulocyte responsiveness to PMA. In the longitudinal cross-over study, the 8-OHdG level significantly decreased, and blood lipid-adjusted plasma alpha-tocopherol increased after switching the cellulose membrane to CL-E or synthetic membrane for eight weeks. In contrast, the 8-OHdG level dramatically rose, and blood lipid-adjusted plasma alpha-tocopherol declined after shift of CL-E or synthetic membrane to the cellulose membrane. CL-E membrane exhibited biocompatible and bioactive characteristics. Like synthetic membranes, treatment with a CL-E dialyzer effectively reduced the 8-OHdG content in leukocyte DNA, suppressed intracellular ROS production of granulocytes, and preserved the plasma level of vitamin E. It could further improve granulocyte responsiveness to a PMA challenge. Reduced DNA damage and improved immune function of leukocytes may reduce the cancer and infection risks in chronic HD patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.