Abstract

Aminoacyl-tRNA synthetases are essential enzymes that catalyze attachment of amino acids to tRNAs for decoding of genetic information. In higher eukaryotes, several synthetases associate with non-synthetase proteins to form a high-molecular mass complex that may improve the efficiency of protein synthesis. This multi-synthetase complex is not found in bacteria. Here we describe the isolation of a non-synthetase protein from the archaeon Methanocaldococcus jannaschii that was copurified with prolyl-tRNA synthetase (ProRS). This protein, Mj1338, also interacts with several other tRNA synthetases and has an affinity for general tRNA, suggesting the possibility of forming a multi-synthetase complex. However, unlike the non-synthetase proteins in the eukaryotic complex, the protein Mj1338 is predicted to be a metabolic protein, related to members of the family of H(2)-forming N(5),N(10)-methylene tetrahydromethanopterin (5,10-CH(2)-H(4)MP) dehydrogenases that are involved in the one-carbon metabolism of the archaeon. The association of Mj1338 with ProRS, and with other components of the protein synthesis machinery, thus suggests the possibility of a closer link between metabolism and decoding in archaea than in eukarya or bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.