Abstract

PurposeThe purpose of this study was to determine associations between macular drusen parameters derived from an automatic optical coherence tomography (OCT) algorithm, nonadvanced age-related macular degeneration (AMD) stage, and genetic variants.MethodsEyes classified as early or intermediate AMD with OCT imaging and genetic data were selected (n = 239 eyes). Drusen area and volume measurements were estimated using the Zeiss Cirrus advanced retinal pigment epithelium analysis algorithm in a perifoveal zone centered on the fovea. Associations between drusen measurements and common genetic variants in the complement and high-density lipoprotein (HDL) lipid pathways and the ARMS2/HTRA1 variant were calculated using generalized estimating equations and linear mixed models adjusting for age, sex, smoking, body mass index, and education.ResultsDrusen area ≥ the median was independently associated with a higher number of risk alleles for CFH risk score and risk variants in C3 and ARMS2/HTRA1 compared with eyes with no measurable drusen. Similar results were obtained for drusen volume. When all genes were analyzed in the same model, only CFH score and ARMS2/HTRA1 were associated with drusen measurements. HDL pathway genes were not significantly related to drusen parameters. Nonadvanced AMD stages were associated with OCT-derived drusen area and volume.ConclusionsVariants in CFH and ARMS2/HTRA1, commonly associated with advanced AMD, were independently associated with an increase in drusen burden determined by OCT in an allele dose dependent manner, in eyes with early and intermediate AMD. Biomarkers such as a quantitative classification of nonadvanced AMD and other OCT-derived subphenotypes could provide earlier anatomic endpoints for clinical trials and facilitate the development of new therapies for AMD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call