Abstract

Aldehydes as an environmental pollutant may lead to oxidative stress, which is an important mechanism in the development of osteoporosis. This suggests a possible link between aldehyde exposure and osteoporosis. Considering the mixed nature of aldehyde exposure and the interactions between different aldehydes, we explored for the first time the associations between mixed six aldehydes (benzaldehyde, butyraldehyde, heptanal, hexanal, isovaleraldehyde, and propionaldehyde) and BMD in three populations (men, premenopausal women, and postmenopausal women) by applying four statistical models: quantile g-computation (qgcomp) model, Bayesian kernel machine regression (BKMR) model, generalized linear regression model (GLM), and generalized additive model (GAM), based on the National Health and Nutrition Examination Survey (NHANES) 2013-2014. We found that mixed aldehydes could significantly reduce BMD in men, with hexanaldehyde and propanaldehyde having the greatest negative qgcomp model and BKMR model weights, also confirmed by GLM. The associations between isopentanaldehyde and propanaldehyde and femoral BMD in men were non-linear and had threshold effects as derived from the BKMR model and GAM. The associations turned positive when the concentrations of isopentanaldehyde and propanaldehyde exceeded their respective inflection points. To conclude, our study might provide new ideas for the prevention and treatment of osteoporosis, and hexanaldehyde and propanaldehyde should be more regulated to prevent osteoporosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call