Abstract

Higher caffeine consumption during pregnancy has been associated with lower birth weight. However, associations of caffeine consumption, based on both plasma concentrations of caffeine and its metabolites, and self-reported caffeinated beverage intake, with multiple measures of neonatal anthropometry, have yet to be examined. To evaluate the association between maternal caffeine intake and neonatal anthropometry, testing effect modification by fast or slow caffeine metabolism genotype. A longitudinal cohort study, the National Institute of Child Health and Human Development Fetal Growth Studies-Singletons, enrolled 2055 nonsmoking women at low risk for fetal growth abnormalities with complete information on caffeine consumption from 12 US clinical sites between 2009 and 2013. Secondary analysis was completed in 2020. Caffeine was evaluated by both plasma concentrations of caffeine and paraxanthine and self-reported caffeinated beverage consumption measured/reported at 10-13 weeks gestation. Caffeine metabolism defined as fast or slow using genotype information from the single nucleotide variant rs762551 (CYP1A2*1F). Neonatal anthropometric measures, including birth weight, length, and head, abdominal, arm, and thigh circumferences, skin fold and fat mass measures. The β coefficients represent the change in neonatal anthropometric measure per SD change in exposure. A total of 2055 participants had a mean (SD) age of 28.3 (5.5) years, mean (SD) body mass index of 23.6 (3.0), and 580 (28.2%) were Hispanic, 562 (27.4%) were White, 518 (25.2%) were Black, and 395 (19.2%) were Asian/Pacific Islander. Delivery occurred at a mean (SD) of 39.2 (1.7) gestational weeks. Compared with the first quartile of plasma caffeine level (≤28 ng/mL), neonates of women in the fourth quartile (>659 ng/mL) had lower birth weight (β = -84.3 g; 95% CI, -145.9 to -22.6 g; P = .04 for trend), length (β = -0.44 cm; 95% CI, -0.78 to -0.12 cm; P = .04 for trend), and head (β = -0.28 cm; 95% CI, -0.47 to -0.09 cm; P < .001 for trend), arm (β = -0.25 cm; 95% CI, -0.41 to -0.09 cm: P = .02 for trend), and thigh (β = -0.29 cm; 95% CI, -0.58 to -0.04 cm; P = .07 for trend) circumference. Similar reductions were observed for paraxanthine quartiles, and for continuous measures of caffeine and paraxanthine concentrations. Compared with women who reported drinking no caffeinated beverages, women who consumed approximately 50 mg per day (~ 1/2 cup of coffee) had neonates with lower birth weight (β = -66 g; 95% CI, -121 to -10 g), smaller arm (β = -0.17 cm; 95% CI, -0.31 to -0.02 cm) and thigh (β = -0.32 cm; 95% CI, -0.55 to -0.09 cm) circumference, and smaller anterior flank skin fold (β = -0.24 mm; 95% CI, -0.47 to -0.01 mm). Results did not differ by fast or slow caffeine metabolism genotype. In this cohort study, small reductions in neonatal anthropometric measurements with increasing caffeine consumption were observed. Findings suggest that caffeine consumption during pregnancy, even at levels much lower than the recommended 200 mg per day of caffeine, are associated with decreased fetal growth.

Highlights

  • Caffeine consumption during pregnancy has been an ongoing topic of debate

  • Findings suggest that caffeine consumption during pregnancy, even at levels much lower than the recommended 200 mg per day of caffeine, are associated with decreased fetal growth

  • Systematic reviews and meta-analyses have reported that maternal caffeine consumption, even in doses lower than 200 mg, is associated with a higher risk for low birth weight, small for gestational age (SGA), and fetal growth restriction,[2,3] suggesting there may be no safe amount of caffeine during pregnancy

Read more

Summary

Introduction

Caffeine consumption during pregnancy has been an ongoing topic of debate. As of 2010, the American College of Obstetricians and Gynecologists recommends that pregnant women limit caffeine consumption to less than 200 mg per day.[1]. In 1 meta-analysis,[3 4] of 9 studies reported null or contrary results.[4,5,6,7] These inconsistent associations may have been owing to the reliance of most studies on self-reported measures of caffeine intake.[2,3] Coffee varies in its caffeine content based on preparation method, and serving size of caffeinated beverages may vary across respondents.[8] some studies of caffeine consumption did not control for important confounders such as smoking.[9] Further, there are variations in individual caffeine metabolism, such that people with fast metabolism, those with a genetic variant leading to more rapid caffeine metabolism, may be at higher risk for adverse pregnancy outcomes, potentially because of higher exposure to paraxanthine, the primary metabolite in caffeine.[10,11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call