Abstract

Electrical properties estimated from the electrical resistance of the human body can serve as indicators of muscle tissue status and the risk of developing sarcopenia; however, to date, at least to the best of our knowledge, no studies have performed such an assessment in older individuals with advanced dementia. The present study examined the associations between grip strength, body composition and electrical properties using bioimpedance spectroscopy (BIS) in women aged 77-97 years residing in dementia group homes. A total of 33 participants were enrolled with an average age of 88.1±5.2 years; 57.6% of the participants had moderate or severe dementia. The resistance values of the participants were measured in the whole body, upper limbs and lower limbs using BIS, and their body composition, muscle mass index and electrical properties were estimated as indicators of muscle quality. In addition, grip strength was measured and the participants were classified into three groups (high, low and non-measurable) according to their cognitive function. The effect size (partial eta-squared and Cohen's d) was also evaluated. The Shapiro-Wilk test was used to assess the distribution of each variable; variables with non-normal distributions were analyzed following log transformation. Continuous variables were analyzed using a one-way analysis of variance and the Tukey-Kramer post hoc test was used. The post hoc sample size (statistical power: 1-β) analysis revealed a power of ~80% (i.e., 76.1-88.7%), considering the minimum power for sufficient participants. No differences were found in body composition or muscle mass index among the three grip strength groups. As regards the upper limbs, the electrical properties of the characteristic frequencies were significant (P=0.006; effect size, large), and the membrane capacitance (P=0.005; effect size, large) was significantly higher in the high-dose group than in the other groups. A significant association was detected among grip strength, upper limb characteristic frequency and membrane capacitance. Hence, electrical properties may be an indicator of muscle quality in older women identified as needing care for dementia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.