Abstract

Self-assembly is a widely used synthetic method in nanoscience to assemble well-organized structures. Self-assembly processes usually occur in a water solvent environment. However, the self-assembly of water molecules is rarely studied. Herein, we show a strategy to fabricate porous ice via carbon nanomaterial-assisted self-assembly. Diverse frameworks of nanoporous ice are formed by using orthorhombic and tetragonal arrays of carbon nanotubes or carbon-atom chains as templates. In contrast to many bulk ices discovered in nature, nanoporous ices are shown to be stable only under negative pressure. Hence, nanoporous ices cannot be produced through the direct nucleation of water at negative pressure. The template-assisted self-assembly method is shown to be the most effective method to fabricate nanoporous ice in quantity. Several key factors for the self-assembly of nanoporous ices are identified, including proper gap spacings in the carbon nanomaterial template and suitable interactions between water and the carbon nanomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.