Abstract
The Michael addition step and the following C5 isomerization in Hayashi’s synthesis of Oseltamivir was studied by means of a DFT mechanistic study. These steps are crucial for the viability of the process where the formation of a single stereoisomer is required. The results indicate that the addition reaction is under thermodynamic and not kinetic control and that the key factor determining the reaction stereoselectivity are the stereochemical constraints imposed by all substituents in the cyclohexane ring. The DFT results indicate that cyclohexylthiol should behave similarly to p-toluylthiol, the one actually employed, and tert-butylthiol should increase the ratio between isomers favoring the desired S configuration of the C5 atom. This work shows that DFT studies can be useful in the selection of a reactant to improve stereoselectivity of a chemical step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.