Abstract

AbstractThis study presents an evaluation of the impact of vegetation conditions on a land surface model (LSM) simulation of agricultural drought. The Noah-MP LSM is used to simulate water and energy fluxes and states, which are transformed into drought categories using percentiles over the continental United States from 1979 to 2017. Leaf area index (LAI) observations are assimilated into the dynamic vegetation scheme of Noah-MP. A weekly operational drought monitor (the U.S. Drought Monitor) is used for the evaluation. The results show that LAI assimilation into Noah-MP’s dynamic vegetation scheme improves the model’s ability to represent drought, particularly over cropland areas. LAI assimilation improves the simulation of the drought category, detection of drought conditions, and reduces the instances of drought false alarms. The assimilation of LAI in these locations not only corrects model errors in the simulation of vegetation, but also can help to represent unmodeled physical processes such as irrigation toward improved simulation of agricultural drought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.