Abstract
Surface currents measured by high frequency (HF) radar arrays are assimilated into a regional ocean model over Qingdao coastal waters based on Kalman filter method. A series of numerical experiments are performed to evaluate the performance of the data assimilation schemes. In order to optimize the analysis procedure in the traditional ensemble Kalman filter (ENKF), a different analysis scheme called quasiensemble Kaman filter (QENKF) is proposed. The comparisons between the ENKF and the QENKF suggest that both them can improve the simulated error and the spatial structure. The estimations of the background error covariance (BEC) are also assessed by comparing three different methods: Monte Carlo method; Canadian quick covariance (CQC) method and data uncertainty engine (DUE) method. A significant reduction of the root-mean-square (RMS) errors between model results and the observations shows that the CQC method is able to better reproduce the error statistics for this coastal ocean model and the corresponding external forcing. In addition, the sensibility of the data assimilation system to the ensemble size is also analyzed by means of different scales of the ensemble size used in the experiments. It is found that given the balance of the computational cost and the forecasting accuracy, the ensemble size of 50 will be an appropriate choice in the Qingdao coastal waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.