Abstract

Calcium phosphate mineral [HAp] is a vital ingredient in orthopaedics, dental and hard tissue applications in mammals. Since it can absorb a large number of impurities, the doped HAp has the potential for biomedical applications using its physical and structural properties. In this research, the Mn-doped HAp in which x calcium atoms are replaced by Mn (Ca10-x Mnx (PO4)6(OH)2 where x = 0.2, 0.4, 0.6, 0.8 mol) is obtained by the co-precipitation method. The physical properties of Mn-doped HAp, such as average crystallite size and degree of crystalline, are determined through XRD studies. The peaks corresponding to the functional groups PO43−, CO, and OH of the samples are identified by FTIR studies. The impedance spectroscopy method helps in the investigation of electrical conductivity, and dielectric loss in the impedance spectra for various doping concentrations. The average molar ratio of HApMn is determined with the help of EDX. It was found that there is a decrease in the degrees of crystallization with the doping element concentration (Mn) in all the samples. The diffraction (hkl) indices are confirmed from the selected area electron diffraction (SAED) rings, and the morphological study of the samples using TEM confirms the shape as a rod-like structure. To conclude, the variation in the characteristics of HAp relies on the doping concentration of Mn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call