Abstract

Abstract The Advanced Baseline Imager (ABI) aboard the GOES-16 and GOES-17 satellites provides high-resolution observations of cloud structures that could be highly beneficial for convective-scale DA. However, only clear-air radiance observations are typically assimilated at operational centers due to a variety of problems associated with cloudy radiance data. As such, many questions remain about how to best assimilate all-sky radiance data, especially when using hybrid DA systems such as EnVar wherein a nonlinear observation operator can lead to cost function gradient imbalance and slow minimization. Here, we develop new methods for assimilating all-sky radiance observations in EnVar using the novel Rapid Refresh Forecasting System (RRFS) that utilizes the Finite-Volume Cubed-Sphere (FV3) model. We first modify the EnVar solver by directly including brightness temperature (Tb) as a state variable. This modification improves the balance of the cost function gradient and speeds up minimization. Including Tb as a state variable also improves the model fit to observations and increases forecast skill compared to utilizing a standard state vector configuration. We also evaluate the impact of assimilating ABI all-sky radiances in RRFS for a severe convective event in the central Great Plains. Assimilating the radiance observations results in better spinup of a tornadic supercell. These data also aid in suppressing spurious convection by reducing the snow hydrometeor content near the tropopause and weakening spurious anvil clouds. The all-sky radiance observations pair well with reflectivity observations that remove primarily liquid hydrometeors (i.e., rain) closer to the surface. Additionally, the benefits of assimilating the ABI observations continue into the forecast period, especially for localized convective events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call