Abstract

The disulfide bridges in recombinant human macrophage colony stimulating factor (rhM-CSF), a 49-kDa homodimeric protein, were assigned. The 18 cysteines in the dimer form three intermolecular and two sets of three intramolecular disulfide bonds. The intermolecular disulfide bridges hold the dimer together and form symmetric bonds in which Cys31 and Cys157/Cys159 from one monomer unit are linked to the corresponding cysteines of the second monomer. The intramolecular disulfide bonds are located between Cys7-Cys90, Cys48-Cys139, and Cys102-Cys146, respectively. The resistance of native M-CSF to proteolytic cleavage was overcome by an initial chemical cleavage reaction using BrCN. The close proximity of four cysteines (Cys139, Cys146, Cys157, and Cys159) results in a tight core complex that makes the protein undigestable for most proteases. Digestion using endoprotease Asp-N resulted in cleavage at Asp156 near the C-terminal end of this region, thereby opening the complex structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.