Abstract

This work describes a comprehensive assignment of the vibrational spectra of the platinum(II) diimine bisthiolate and chloride complexes as a prototype structure for a diversity of Pt(II) diimine chromophores. The dynamics and energy dissipation pathways in excited states of light harvesting molecules relies largely on the coupling between the high frequency and the low frequency modes. As such, the assignment of the vibrational spectrum of the chromophore is of utmost importance, especially in the low-frequency region, below 500 cm(-1), where the key metal-ligand framework modes occur. This region is experimentally difficult to access with infrared spectroscopy and hence frequently remains elusive. However, this region is easily accessible with Raman and inelastic neutron scattering (INS) spectroscopies. Accordingly, a combination of inelastic neutron scattering and Raman spectroscopy with the aid of computational results from periodic-DFT and the mode visualizations, as well as isotopic substitution, allowed for an identification of the modes that contain significant contributions from Pt-Cl, Pt-S, and Pt-N stretch modes. The results also demonstrate that it is not possible to assign transition energies to "pure", localized modes in the low frequency region, as a consequence of the anticipated severe coupling that occurs among the skeletal modes. The use of INS has proved invaluable in identifying and assigning the modes in the lowest frequency region, and overall the results will be of assistance in analyzing the structure of the electronic excited state in the families of chromophores containing a Pt(diimine) core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.